## Original article:

# Morphometric study of Cruciate ligaments of Knee joints: A cadaveric study in Eastern Indian population 

${ }^{1}$.Dr. Rajarshi Dutta, ${ }^{2}$.Dr.Alipta Bhattacharya, ${ }^{3}$.Dr. Ratnadeep Poddar , ${ }^{4}$.Dr. Iman Sinha, 5.Prof(Dr)Asis Kumar Ghosal<br>${ }^{1}$ MBBS, MD(ANATOMY) Contractual Medical Officer(Specialist).Department of Anatomy, North Bengal medical College, Sushrutnagar, District-Darjeeling, West Bengal ,India<br>${ }^{2}$ MBBS,DO,MD.(ANATOMY) Assistant Professor,Department of Anatomy,Institute of Post Graduate Medical Education \& Research, Kolkata, West Bengal India.<br>${ }^{3}$ MBBS,M.D(ANATOMY) Demonstrator,Department of Anatomy,Institute of Post Graduate Medical Education \& Research, Kolkata, West Bengal India.<br>${ }^{4}$ MBBS,M.D(ANATOMY) Assistant Professor,Department of Anatomy,Institute of Post Graduate Medical Education \& Research, Kolkata, West Bengal India.<br>${ }^{5}$ MBBS,M.S(ANATOMY)Professor\& HOD Department of Anatomy,Institute of Post Graduate Medical Education \& Research, Kolkata, West Bengal India.<br>Corresponding author :Dr. Alipta Bhattacharya


#### Abstract

: Introduction : This study is an effort to determine the accurate morphomateric data pertaining to the Anterior and Posterior cruciate ligaments in relation to the native eastern Indian population.

Aims And Objectives: To study the following parameters of Anterior and Posterior Cruciate Ligaments of the knee joint : Length and Width of Anterior and Posterior Cruciate Ligaments at their middle $3^{\text {rd }}$ as well as the extent of their variation.

Methods \& Materials : The study was carried out in the Department of Anatomy of our institute in cadavers donated to the department during a period of one year. Subjects having no obvious macroscopic deformities of their knee joints and ages ranging between 30 years to 60 years of both sexes were only chosen. 50 knee joints belonging to 25 cadavers matching the above criteria were dissected for the study.

Result \&Analysis : The mean length of the ACL of left side was recorded to be 20.02 mm and the mean width of the ACL in its middle third was recorded to be 6.54 mm .The mean length of the ACL for the right side was found to be 20.06 mm and mean width of the ACL in its middle third on the right side was found to be 6.23 mm . The mean length and width of the PCL in left side, in the present study were recorded to be 20.10 mm and 6.22 mm respectively. For the right side, the mean length and width ( middle third ) of the PCL were found to be 20.08 mm and 5.90 mm respectively.

Conclusion : This study will provide valuable information to the orthopaedicians from which they can choose the exact sized grafts for cruciate ligament reconstruction, which is the preferred mode of treatment for injuries to the cruciate ligaments, now a days.


Keywords: :Morphometry, cruciate ligaments, knee joint

## Introduction:

Cruciate ligaments are very strong ligaments of knee joint. There are two cruciate ligaments, one being Anterior (ACL) and the other being Posterior (PCL) in par with their attachments to the tibia . Cruciate ligaments play an equally important role in providing stability to the knee joint.The ACL of knee is the most commonly injured ligament, representing about $60 \%$ of all knee injuries ${ }^{1}$.ACL tear is usually associated with other injuries like medial collateral ligament and meniscal injuries of the knee ( Unhappy triad of O'Donoghue ), which causes functional instability of that joint . ACL injuries show long term effects on knee joint such as degenerative joint diseases like secondary osteoarthritis. So, reconstruction of ACL is essential in injured cases. For planning reconstruction surgery by using Patellar Tendon Allograft or Hamstring Tendon Allograft techniques, it is essential to know the detailed anatomy and morphometric measurements of ACL. ${ }^{2}$ PCL injuries are more common than initially thought, comprising $3 \%$ of all knee injuries and being present in $37 \%$ of trauma patients with acute haemarthroses ${ }^{3}$.This incidence is dependent on the patient population reported, with PCL tears occurring more frequently in trauma patients than in athletic injury patients. Classification into isolated versus multi-ligament injured knees is important for taking decision during treatment . Isolated injuries to the PCL may have good results with non operative treatment, whereas multi-ligament injured knees have better outcomes with surgical intervention as it represents a complex problem in orthopaedic surgery ${ }^{4}$.Henceforth for the surgical repair of cruciate ligaments it is mandatory that orthopaedic surgeons should have detailed anatomical knowledge about various morphometric data of cruciate
ligaments, which will guide them in determining the appropriate size of the allograft to be utilized in the procedure of such reconstruction ${ }^{5,6}$.

## Aims \&Objectives

1.To study the following parameters of Anterior and Posterior Cruciate Ligaments of the knee joint -
a) Length of Anterior and Posterior Cruciate Ligaments.
b) Width of Anterior and Posterior Cruciate Ligaments at their middle $3{ }^{\text {rd }}$.
2.To document the extent of variation in the above parameters.

## Materials \&Methods

The study was carried out in the Department of Anatomy of our institute in cadavers donated to the department during a period of one year. Subjects having no obvious macroscopic deformities of their knee joints and ages ranging between 30 years to 60 yearsof both sexes were only chosen . 50 knee joints belonging to 25 cadavers matching the above criteria were dissected for the study. Knee joints of both sides were dissected .After dissecting the skin, soft tissues and muscles, the menisci were approached anteriorly by a longitudinal incision on each side of the joint capsule ,cutting the patellar ligament and the collateral ligaments transversely.,The anterior cruciate ligament ( ACL ) and the posterior cruciate ligament ( PCL ) were dissected after removing the intra - articular fat and other soft tissues ,so that their femoral as well as tibial attachments can be clearly denoted .The ACL was measured for its length $\&$ width (at middle $3^{\text {rd }}$ ) from the anterior aspect of the joint .The PCL was measured for the same parameters from the posterior aspect of the knee joint .The above was done by means of a digital Vernier Calliper .

## Results \& Analysis

Amongst the 50 cadaveric knee joints dissected (in 25 cadavers) for the purpose of this present study, 13 were males and 12 were females.The mean age of the cadavers were found to be 56.32 with a Standard Deviation ( SD ) of 3.755.The maximum age was recorded to be 60 yrs . and minimum to be 49 yrs . In the present study, the mean length of the ACL of left side was recorded to be 20.02 mm with SD of 1.222 and the mean width of the ACL in its middle third was recorded to be 6.54 mm with SD of 0.759 .

The mean length of the ACL for the right side was found to be 20.06 mm with SD of 1.414 and mean width of the ACL in its middle third on the right side was found to be 6.23 mm with SD of 0.784 . The mean length and width of the PCL in left side, in the present study were recorded to be 20.10 mm with SD of 1.126 and 6.22 mm with SD of 0.851 respectively. For the right side, the mean length and width ( middle third ) of the PCL were found to be 20.08 mm with SD of 1.130 and 5.90 mm with SD of 0.777 respectively.

Table 1. Descriptive statistics of numerical variables -left side

|  | n | mean | 95\%CI <br> UL | LL <br> LL | median | min | max | Lower <br> quartile | Upper <br> quartile | Std.Dev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age <br> ACL <br> length | 50 | 56.32 | 55.25 | 57.39 | 58.00 | 49.00 | 60.00 | 52.00 | 59.00 | 3.755 |
| ACL <br> Width <br> mid $1 / 3$ <br> rd | 50 | 6.02 | 19.67 | 20.37 | 20.07 | 18.32 | 21.73 | 18.91 | 21.24 | 1.222 |
| PCL <br> length | 50 | 20.10 | 19.78 | 20.42 | 20.28 | 18.34 | 21.67 | 19.01 | 21.09 | 1.126 |
| PCL <br> Width <br> mid $1 / 3$ <br> rd | 50 | 6.22 | 5.98 | 6.46 | 6.56 | 4.80 | 7.35 | 5.39 | 6.98 | 0.851 |

Table 2. Descriptive statistics of numerical variables -Right side

|  | n | mean | $\begin{aligned} & 95 \% \mathrm{CI} \\ & \mathrm{UL} \end{aligned}$ | $\begin{aligned} & 95 \% \mathrm{CI} \\ & \mathrm{LL} \end{aligned}$ | median | min | max | $\begin{aligned} & \text { Lower } \\ & \text { quartile } \end{aligned}$ | Upper quartile | Std.Dev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACL <br> length | 50 | 20.06 | 19.66 | 20.46 | 20.45 | 17.98 | 22.21 | 18.71 | 21.28 | 1.414 |
| ACL <br> Width <br> mid $1 / 3$ <br> rd | 50 | 6.23 | 6.00 | 6.45 | 6.41 | 4.89 | 7.76 | 5.60 | 6.88 | 0.784 |
| PCL <br> length | 50 | 20.08 | 19.76 | 20.40 | 20.66 | 18.52 | 21.76 | 18.93 | 20.98 | 1.130 |
| PCL <br> Width <br> mid $1 / 3$ <br> rd | 50 | 5.90 | 5.68 | 6.12 | 5.99 | 4.77 | 7.02 | 5.09 | 6.64 | 0.777 |

Table 3: Comparison of numerical variables between Male and Female - Student's unpaired $\mathbf{t}$ test.-left side.

|  | Male <br> Mean | Female <br> Mean | t-value | df | p | Valid N <br> (M) | Valid N <br> (F) | Std.Dev <br> M. | Std.Dev. <br> F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age | 56.30 | 56.35 | -0.0479 | 48 | 0.962 | 27 | 23 | 3.709 | 3.892 |
| ACL <br> length | 21.07 | 18.78 | 20.2718 | 48 | 0.000 | 27 | 23 | 0.484 | 0.267 |
| ACL <br> Width <br> mid $1 / 3$ | 7.19 | 5.77 | 19.8887 | 48 | 0.000 | 27 | 23 | 0.266 | 0.235 |
| rd |  |  |  |  |  |  |  |  |  |


| mid  <br> rd $1 / 3$ <br>   |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 4: Comparison of numerical variables between Male and Female - Student's unpaired $t$ test.—Right side

|  | Male <br> Mean | Female <br> Mean | t-value | df | p | Valid N <br> (M) | Valid N <br> (F) | Std.Dev <br> M. | Std.Dev. <br> F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ACL <br> length | 21.27 | 18.64 | 18.2196 | 48 | 0.000 | 27 | 23 | 0.606 | 0.359 |
| ACL <br> Width <br> mid $1 / 3$ <br> rd | 6.88 | 5.46 | 15.6385 | 48 | 0.000 | 27 | 23 | 0.335 | 0.302 |
| PCL <br> length | 21.08 | 18.90 | 28.6628 | 48 | 0.000 | 27 | 23 | 0.328 | 0.174 |
| PCL <br> Width <br> mid $1 / 3$ <br> rd | 6.56 | 5.13 | 16.9443 | 48 | 0.000 | 27 | 23 | 0.307 | 0.286 |

Table 4:
Comparisons between anterior and posterior cruciate ligaments - paired $\mathbf{t}$ test

## In males

| Parameter | 2-sided p value <br> Left side | 2-sided p value <br> Right side |
| :--- | :--- | :--- |
| ACL_Len vs PCL_len | 0.981 | 0.091 |
| ACL_WidthMid vs PCL_WidthMid | $\mathbf{0 . 0 0 1}$ | $\mathbf{0 . 0 0 0}$ |

## In females

| Parameter | 2-sided $\mathbf{p}$ value <br> Left side | 2-sided $\mathbf{p}$ value <br> Right side |
| :--- | :--- | :--- |
| ACL_Len vs PCL_len | $\mathbf{0 . 0 3 5}$ | $\mathbf{0 . 0 0 5}$ |
| ACL_WidthMid vs PCL_WidthMid | $\mathbf{0 . 0 0 0}$ | $\mathbf{0 . 0 0 3}$ |

Figure 1. - Bar Diagram showing comparison of mean length of ACL and PCL of the right and left sides.


Figure 2: Bar Diagram showing comparison of mean width of ACL and PCL in the middle thirds of the right and left sides


## Discussion

Not much studies had been done in the field of morphometric study of the ACL and PCL of the knee joints. In standard anatomical textbooks, the average length and width of the ACL is mentioned to be 38 mm and 11 mm respectively. This length and width in case of the PCL are mentioned to be 38 mm and 13 mm respectively ${ }^{7,8}$.So, ACL and PCL of the knee joints, though same in length, the

PCL has been mentioned to be thicker than the ACL in standard anatomical textbooks.Odensten et al ${ }^{9}$,recorded the average length of the ACL in 33 cadaveric knee joints to be 31 mm . Whereas, Gillquist et al ${ }^{10}$,measured the length of the ACL in cadavers to be 32 mm .However, the above mentioned studies did not specify any gender or side variations.

|  | Present study | Odensten et al | Gillquist et al |
| :--- | :--- | :--- | :--- |
| Mean length of ACL | $20.02 \mathrm{~mm}(\mathrm{Lt})$ | 31 mm | 32 mm |
|  | $20.06 \mathrm{~mm}(\mathrm{Rt})$ |  |  |

Unpaired t test performed to compare the above values between males and females showed a $p$ value of $<0.001$, both in case of the length and width of the ACL, indicating significant gender variations between the two sides when compared. When compared to the values for the mean length and width of the ACL published in the standard anatomical textbooks, the mean length of the ACL of both the sides were recorded much less in this present study. This can perhaps be explained by the ethnic origins of the cadavers studied in this present study. Unpaired $t$ test performed between the data obtained from the male and female cadavers showed p values both for the length and width ( middle third ) of the PCL to be $<$ 0.001 ,thereby indicating significant gender differences
in those values of the PCL. Yelicherla et $\mathrm{al}^{11}$ in their study regarding the cruciate ligaments of the knee joints in cadavers, recorded the mean length and width of the ACL considerably greater in males when compared to that of the female ( $\mathrm{p}<0.05$ ).This finding was consistent to that found in the present study ( $\mathrm{p}<0.001$ ). Unlike this present study, the study done by Yelicherla et al showed the mean length of the ACL irrespective of the side, to be 43.5 mm in males and 41.9 mm in females. The mean width of the ACL in the same study was recorded to be 12.1 mm in case of male cadavers and 11.0 mm in case of the female cadavers. Thus, both these recorded values were significantly higher when compared to the same for the present study.

|  | Present study | Yelicherla et al |
| :--- | :--- | :--- |
| Mean width of ACL | 7.19 mm ( males ) | 12.1 mm ( males ) |
|  | 5.77 mm ( females ) | 11.0 mm ( females ) |

Similar findings were observed for the mean length and width in the middle thirds for the PCL, when
compared between the study done by Yelicherla et al and the present study. Comparison between the ACL
and the PCL by means of paired $t$ test showed, 2 sided p value for the mean length on the left side to be 0.981 in males and for the right side in males to be 0.091.For the width, p values in males for the left side was calculated to be 0.001 and that for the right side to be < 0.001, which indicated significant differences in width of the ACL and PCL for both the sides. In case of females, p values for the length were calculated to be 0.035 on the left side and 0.005 on the right side, which showed not much difference in their values, when they are compared. For the width ( middle thirds ), p values were found to be $<0.001$ in the right side and 0.003 in the left side. This on the other hand showed significant differences in width between the ACL and PCL also in females, both in the right as well as left sides. None of the studies mentioned previously in this discussion said anything regarding the
comparison between the data obtained for the ACL and PCL.

## Conclusion

The present study will contribute to the literature regarding the morphometry of the cruciate ligaments of the knee joint. The study not only recorded those data but also compared those between the two sides and either sex. This will provide valuable information to the orthopaedicians from which they can choose the exact sized grafts for cruciate ligament reconstruction, which is the preferred mode of treatment for injuries to the cruciate ligaments, now a days. However, the study will be more informative if the sample size is more and may be more accurate if the study is done with Magnetic Resonance Imaging techniques, which can show the morphological features of the menisci and cruciate ligaments better.

Photograph 1 - Showing the left knee joint before dissection


Photograph 2 - Showing the length of Anterior Cruciate Ligament


Photograph 3 - Showing width of the Posterior Cruciate Ligament.


## References:

1. Amis AA, Jakob RP. Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 1998; 6 ( suppl 1):S2-S12.
2. Beynnon BD, Johnson RJ, Fleming BC, et al. Anterior cruciate ligament replacement: Comparison of bone patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 2002; 84: 1503-1513.
3. Fanelli GC , Edson CJ. Posterior cruciate ligament injuries in trauma patients: part II. Arthroscopy 1995; 11:526-529
4. Fanelli, G.C., Feldmann, D.D. The dislocated/multiple ligament injured knee. Oper Tech Orthop. 1999;9:298-308.
5. Siebold R, Ellert T, Metz S, Metz J. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament : Morphometry and arthroscopic orientation models for double-bundle bone tunnel placement A cadaver study. Arthroscopy 2008 ; 24:585-592.
6. Odensten M , Gillquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg (Am) 1985; 67(2): 2
7. Standring S. The anatomical basis of clinical practice .In: Standing S, editor-in-chief. Gray's Anatomy. $39^{\text {th }}$ ed. London: Elsevier Limited, 2006; 1476-1487.
8. Amis AA, Gupte CM, Bull AM, Edwards A. Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc . 2006 ;14(3):257-63
9. Odensten M, Gillquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg (Am) 1985; 67(2): 257-62.
10. Gillquist J. Drill hole reproducibility in ACL reconstruction. Sports Med Arthrosc 1996; 4:342-9.
11. Yelicherla A.K.R.,Gabje U.,Singh Brijraj,; Asian Pac. J. Health Sci., 2014; 1(3): 285-291.
